Recent leap in helium exploration could save lives

Original news release was issued by the University of Oxford.
Unless you are knee-deep in the industry, you are most likely unaware of just how important helium is. Much like other fossil fuels, it is gathered from Earth, but it has never been found intentionally. The helium in our reserves comes from small pockets that we have find accidentally, and these reserves are quickly running out. That’s because helium has proved to be immensely useful for MRI scanners, welding, industrial leak detection, and nuclear energy.
Luckily, researchers from Oxford and Durham universities together with Norway-based helium exploration company Helium One, have developed a brand new exploration approach. The first use of this method has resulted in the discovery of a world-class helium gas field in Tanzania. And more deposits are likely to follow.
The research shows that volcanic activity provides the intense heat necessary to release the gas from ancient, helium-bearing rocks. Within the Tanzanian East African Rift Valley, volcanoes have released helium from ancient deep rocks and have trapped this helium in shallower gas fields.

“Independent experts have calculated a probable resource of 54 Billion Cubic Feet (BCf) in just one part of the rift valley. This is enough to fill over 1.2 million medical MRI scanners,” said Professor Chris Ballentine, Department of Earth Sciences, University of Oxford.

Diveena Danabalan, of Durham University’s Department of Earth Sciences, said: “We show that volcanoes in the Rift play an important role in the formation of viable helium reserves. Volcanic activity likely provides the heat necessary to release the helium accumulated in ancient crustal rocks. However, if gas traps are located too close to a given volcano, they run the risk of helium being heavily diluted by volcanic gases such as carbon dioxide, just as we see in thermal springs from the region. We are now working to identify the ‘goldilocks-zone’ between the ancient crust and the modern volcanoes where the balance between helium release and volcanic dilution is ‘just right’.”
Ballentine said: “We sampled helium gas (and nitrogen) just bubbling out of the ground in the Tanzanian East African Rift valley. By combining our understanding of helium geochemistry with seismic images of gas trapping structures, independent experts have calculated a probable resource of 54 Billion Cubic Feet (BCf) in just one part of the rift valley. This is enough to fill over 1.2 million medical MRI scanners. To put this discovery into perspective, global consumption of helium is about 8 BCf per year and the United States Federal Helium Reserve, which is the world’s largest supplier, has a current reserve of just 24.2 BCf. Total known reserves in the USA are around 153 BCf. This is a game changer for the future security of society’s helium needs and similar finds in the future may not be far away.”
Dr Pete Barry, Department of Earth Sciences, University of Oxford, who sampled the gases, added: “We can apply this same strategy to other parts of the world with a similar geological history to find new helium resources.  Excitingly, we have linked the importance of volcanic activity for helium release with the presence of potential trapping structures and this study represents another step towards creating a viable model for helium exploration. This is badly needed given the current demand for helium.”